The Steiner ratio for the dual normed plane

نویسندگان

  • Peng-Jun Wan
  • Ding-Zhu Du
  • Ronald L. Graham
چکیده

A minimum Steiner tree for a given set X of points is a network interconnecting the points of X having minimal possible total length. The Steiner ratio for a metric space is the largest lower bound for the ratio of lengths between a minimum Steiner tree and a minimum spanning tree on the same set of points in the metric space. Du et al. (1993) conjectured that the Steiner ratio on a normed plane is equal to the Steiner ratio on its dual plane. In this paper we show that this conjecture is true for Ixl ~<5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Steiner Trees in Normed Planes

A minimum Steiner tree for a given set X of points is a network interconnecting the points of X having minimum possible total length. In this note we investigate various properties of minimum Steiner trees in normed planes, i.e., where the "unit disk" is an arbitrary compact convex centrally symmetric domain D having nonempty interior. We show that if the boundary of D is strictly convex and di...

متن کامل

STABILITY OF THE JENSEN'S FUNCTIONAL EQUATION IN MULTI-FUZZY NORMED SPACES

In this paper, we define the notion of (dual) multi-fuzzy normedspaces and describe some properties of them. We then investigate Ulam-Hyers stability of Jensen's functional equation for mappings from linear spaces into  multi-fuzzy normed spaces. We establish an asymptotic behavior of the Jensen equation in the framework of multi-fuzzy normed spaces.

متن کامل

Antinorms and Radon curves

In this paper we consider two notions that have been discovered and rediscovered by geometers and analysts since 1917 up to the present day. The first is that of a Radon curve, introduced by Radon in 1917 [50]. It is a special kind of centrally symmetric closed convex curve in the plane. Any centrally symmetric closed convex curve in the plane defines a norm turning the plane into a two-dimensi...

متن کامل

Approximating Steiner Trees and Forests with Minimum Number of Steiner Points

Let R be a finite set of terminals in a metric space (M,d). We consider finding a minimum size set S ⊆ M of additional points such that the unit-disc graph G[R ∪ S] of R ∪ S satisfies some connectivity properties. In the Steiner Tree with Minimum Number of Steiner Points (ST-MSP) problem G[R ∪ S] should be connected. In the more general Steiner Forest with Minimum Number of Steiner Points (SF-M...

متن کامل

The second dual of strongly zero-product preserving maps

The notion of strongly Lie zero-product preserving maps on normed algebras as a generalization of Lie zero-product preserving maps are dened. We give a necessary and sufficient condition from which a linear map between normed algebras to be strongly Lie zero-product preserving. Also some hereditary properties of strongly Lie zero-product preserving maps are presented. Finally the second dual of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 171  شماره 

صفحات  -

تاریخ انتشار 1997